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(Subset of) Requirements for
a Quantum Computer

 Abllity to initialize the state of the qubits

e Physical system with two uniquely addressable states

« Ability to implement arbitrary rotations on the Bloch sphere
« Ability to construct a set of universal gates

 Ability to entangle two qubits

 Decoherence times sufficiently long in order to implement
a circuit with enough depth to accomplish a calculation

« Ablility to measure the state of a cubit
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One Type of Quantum Computer Utilizes
Superconducting Transmon Designs

Fixed Frequency Qubits

Flux
Tunable
Qubits
Coplanar
microwav Current
resonator control line

Figure 5.3: Optical images of different transmon designs. (a) Standard transmon design
employed in cQED157 and on one of the qubits in cQED187. (b) Balanced transmon design
used in one of the qubits in cQED187. (¢) and (d) Transmon designs incorporating flux bias
lines. A slightly different transmon SQUID loop design is necessary to accommodate the
flux bias lines entering from the (c) bottom of the chip or from the (d) top of the chip, while
preserving the same double-angle evaporation procedure.

Chow, PhD Thesis
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interactlons Eetween GUEHS are

Implemented by Driving a Transmon at
the Other Qubit's Transmon Frequency

» Co-planar microstrip resonator formed
by gaps in center conductor

* Important to properly choose resonator
frequency with respect to transmon
frequency (more to come)

Blais, et al

e Control is achieved by injecting an RF
signal from one end

 Readout is achieved by looking at
either the transmitted or reflected

signal
29 Octoger %19 Trapped lon Quantum Computer ,
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Superconducting Qubits on a Substrate
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Example IBM Architecture
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Alternative Design For Building a
Quantum Computer
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Step 1
Select Materials That Can Emulate
One and Two Qubit Operations
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Start by Selecting a Material for the TIQC
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QM Describes Each Element’s Atomic
Structure (Energy Levels and Transitions)

« Electrons can change
energy states by
transitioning among
different quantized
energy levels

« Electrons absorb and
emit discrete quantities of
energy and angular
momentum when

undergoing these
transitions

Energy
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Start by Selecting a Material for the TIQC
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Select the Calcium Atom (*9,,Ca)

Calcium Atom Diagram

Electron
~ shalls Atomic
Properties:
Element name = Caleium
Symbol = Ca
Atomic number = 20
___ Electrans | Atomic Mass = 40.08 amu
o Electronegativity = 2

MNote:
-Protons are pesitive

-Electrons are nagative

-Meutrons are neutral

MNeutrons
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Select Mechanism to Interact
with the Selected Material

* Electromagnetic fields are a primary source for
transferring energy and angular momentum to electrons in
the 40Ca atom via electromagnetic force

 Bound state electrons in an atom will absorb and emit
discrete quantities of energy and units of angular
momentum determined by

— Difference between the two bound state energy levels

— The initial and final total angular momentum
(combination of both the electron’s orbital angular
momentum and an “internal” angular momentum called
“Spin”)

Trapped lon Quantum Computer
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Propagation of Electromagnetic Fields

The phase is shifted by a quarter cycle.

/
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Transferring Energy to/from
Bound State Electrons in a Material

« By selecting a specific wavelength of electromagnetic
radiation the experimentalist can control the

— Energy absorbed or emitted by the electron
— Discrete units of angular momentum transferred

« There are specific “guantum mechanics” rules
constraining transitions between energy levels based on
the transition energy and change in angular momentum
(Selection Rules)

Trapped lon Quantum Computer
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FYI — Background Design Information
QM Selection Rules for Atomic Spectra

Electric dipole Magnetic dipole Electric quadrupole
(allowed) (forbidden) (forbidden)
()4 =0,£1 = A] = 0,41 4] =0,+1,+2
(0 0) Rigorous  (040) (0 "J.% = %,ﬂ«}* 1)
(2) AM =0, £1 AM =0, 11 AM =0, x1,x2
(3) Parity change | _ No parity change No parity change
(4) One electron jump No electron jump One or no electron jump
Al = 1 Al=0 Al=10,42
For L - § coupling LS An=10
(5)45=0 A5=10 AS=10
(6) AL =0, %1 AL=10 AL=10,%1,x2
(044 0) " (040,041
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Focus on the Atomic Spectra of 49,,Ca

29 October 2019
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Lasers

Trapped lon Quantum Computer
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Electromagnetic Radiation Properties

e Lightis composed of many electromagnetic fields of
many different energies (frequencies )

: ; E ; ~ ; Incoherent Light

* Need light with properties of coherence (light with
specific frequency and common phase)

W Coherent Light

Trapped lon Quantum Computer
Patrick Dreher
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Need a Focused Source of Energy
- Lasers -

e Lasers (coherent light
source) allow
experimentalists to
“dial-up” a specific
wavelength that will
cause the electron to
transition (resonate)
between two different
energy levels

Trapped lon Quantum Computer
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Lasers in the Experimental Apparatus

e By varying the laser’s
— Polarization
— Wavelength

— Duration of the laser light pulse
the behavior of the electron can be controlled

 From a quantum computing perspective this is
an effective mechanism for creating rotations
and transformations

29 October 2019 Trapped lon Quantum Computer
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Construct the
TIQC Experimental Apparatus

Trapped lon Quantum Computer
Patrick Dreher
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Confine the Atoms into a “Device”
Carl Friedrich Gauss’s Objection
e Static electric field confinement of the atoms in three
dimensions is not possible

e Div E =0 = no net inward force to constrain motion of
the atoms

e Force cannot be inward in all directions = at least one
direction where ions can escape

Trapped lon Quantum Computer
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Consider Quadrapole Field
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Put the Ca Atoms into “Trap” Apparatus

e Construct an apparatus that will confine ions along one
dimension

e Consider a static quadrapole field

Quadrupole ion trap

Trapped lon Quantum Computer
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Model an lon in a
Stationary Quadrupole Field*

Rotating Saddle

* You tube video (stationary saddle) https://www.youtube.com/watch?v=XTJznUKAmIY

Trapped lon Quantum Computer
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NC STATE UNIVERSITY

Put the Ca Atoms into “Trap” Apparatus

« Modify the stationary quadrapole field
 Make a periodic rotation of the shape of the field lines as
seen by the ion by applying an RF voltage

* In addition, the ends of the cylinders are biased at
different dc voltages from the cylinder center so that the
charged ions are axially confined

®
Quadrupole ion trap
o Ny,ﬂ;& 9 - : < 4
s 2 %
il b eler Ir#{:rra ’
bitps:/en.wikipedia.org 'wiki/File: Paul-Trap.svg
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Rotating Saddle Point Surface*

Rotating Saddle

* You tube video https://www.youtube.com/watch?v=rJ13gwRYs

Trapped lon Quantum Computer
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NC STATE UNIVERSITY

Additional Effect of the
Periodic RF Potential

* Net effect produces a combined effect

1. The combination of the RF and DC voltages also
produce a harmonic potential

2. The electrostatic repulsion of each ion creates a string
of ions trapped along the z-axis of the trap

3. Under these conditions the motion of the confined ions
becomes quantized as a 1-dimensional harmonic
oscillator with equally spaced energy levels Tw

Trapped lon Quantum Computer
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lons Implanted within Trap on a Chip

ion trap

K. R. Brown, J. Kim, C, Monroe, Co-designing a scalable
guantum computer with trapped atomic ions, Quantum
Information 2, 16034 (2016).

Trapped lon Quantum Computer
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Trapped lon Vibrational Modes (Phonons)

 These ions are stored Iin the trap at room temperature
 The ions have many thermal vibrational modes (phonons)

e
-0 -0 0909

e Phonons in this context are center of mass energy
eigenstates that represent the coupled vibrational modes of
the entire lattice of ions

Trapped lon Quantum Computer 31
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Phonons Have Many Vibrational Modes*

* lon Trapping, C. Monroe, 12t Canadian Summer School on Quantum information, University of Waterloo, 2012
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“Low Temperature” Requirement
for the TIQC Apparatus

Trapped lon Quantum Computer
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Low Temperature Requirement

for the Experimental Apparatus

* Electrons in ions and the ions themselves are subject to
many types of energy fluctuations at room temperature

 There are many excited states to which the electron and
the ion can transition (unwanted volunteers)

e Suppress this “jitter” by cooling the material

BUICKY HERE COMES THE PHySICIST! wo AT COOLoae

29 October 2019 Trapped lon Quantum Computer »
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Recall The IBM Superconducting Transmon
Design Used Dilution Refrigerators *

1K bath pump

*He pump and
— )
O % purification system

[ liquid nitrogen (77K)
—}— vacuum
FHEE | = | Ay heatshield
E ==|=Ru3F
E2S| pr=aem R liquid helium (4.2K)
: s I E::
; ] vacuum
E==n - — mixing chamber

* Image from http://www.wikiwand.com/en/Dilution_refrigerator
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Low Temperature Experimental Apparatus
IBM Q Quantum Computer Cryostat

IR\

D% |
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« TIQC Apparatus Usually Operates at
Room Temperature

29 October 2019

Uses Different Physics Principles
From IBM QC Hardware Platforms to
Cool the lons

Trapped lon Quantum Computer
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Construct a “Low Temperature”
Environment on the 4°Ca Electrons and lons

Goals

1. Want only a few excited states above the ground state
are accessible to the ion (this limits the size of the Hilbert
space available for energy transitions)

2. The trap must form a 1D harmonic oscillator potential
that stores the 4°Ca ions

3. The %°Ca ions should only exhibit lowest level vibrational
states (phonons) in the 1 dimensional harmonic
oscillator potential when sufficiently cooled

Trapped lon Quantum Computer
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Laser Cooling Design

« To manipulate the ions, they need to remain as
stationary as experimentally feasible within the trap

 For a TIQC platform construct a ultrahigh vacuum
apparatus (< 10° atm pressure)

* In the ultra high vacuum lower the kinetic energy of the
lon to as close to ground state as possible

e Use the laser and physics principle of energy exchange
In collision to extract kinetic energy from the ions

« Result is that the ions will float insider room temperature
vacuum chamber at temperature close to absolute zero

Trapped lon Quantum Computer
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Doppler Cooling

 Alaser beam carries momentum in the photons that can
“collide” with a Calcium lon in the trap and decrease the
lons kinetic energy If the ion and laser beam are
travelling in opposite directions

Laser Gun

 The ion will slow down when the photon from the laser
beam is absorbed by the ion

 The ion will re-radiate the photon energy randomly in all
directions keeping a net zero momentum change for the
lon but decreasing the ion’s kinetic energy

o Drops ion temperature to ~ 0.5 mKelvin

29 October 2019 Trapped lon Quantum Computer
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Manipulating the Ground and Excited States
of the Electrons in the 49,,Ca atom

e Doppler cooling is
applied to the electric
dipole transition (397 nm)

« Small probability of decay o i
to a 3D,, requiring a 2" _T_ 0./
laser to flush photons 103
trapped in this stat

* Requires multiple lasers

I33/2

854 nm

5/2

Excited
397 nm States

tuned to specific S
wavelengths to Ground
depopulate the unwanted State

excited states

Trapped lon Quantum Computer
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Optical Pumping to Hyperfine State
Lower Energy Transition Example

e Laser tuned to differences in
energy levels between
hyperfine excited states and
ground states

 When electron hits lowest
hyperfine ground state there
IS no laser pulse with the
exact energy difference for it
to transition to a higher state

* |In lowest energy state

[ —

o

[ —

'V O

Trapped lon Quantum Computer
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Sideband Cooling

e Trapped ions may be in different vibrational modes
 Tune sequence of lasers to be resonant with transition

lg,n> > |e,n-1> > |g,n-1>>... |g,1> > |e,0> > |g,0>

e Corresponding spontaneous emission will noave no
change in vibration guantum number on average

e Cascading step-down emissions of energy until reach
the |g,0> level which is the lowest energy state

Trapped lon Quantum Computer
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Sideband Cooling

le,n>

le,n-1>

e,1>
e,0> %
S
5
b S
\\

A S
18,n>

1g,n-1>

g,1>

18,0>
Trapped lon Quantum Computer
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Summary of TIQC Device Properties

 Have a design for a 2 level spin system interacting with
an electromagnetic field

e Spin is physically confined within a 1-dimensional
harmonic oscillator potential

e Spin interactions controlled by rotations in response to a
laser pulse

e States are guantized with energy of scale hv

e These harmonic oscillator bound states are identified as
center of mass phonon vibrations

« Laser cooling quiets both the Ca electronic transitions
and phonons excitations to lowest modes

Trapped lon Quantum Computer
Patrick Dreher
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Trapped lon Quantum Computer Design

Trapped lon Quantum Computer
Patrick Dreher
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Simple Model of a
Two Qubit Quantum Computer

e Construct a 2 level spin system interacting with an
electromagnetic field

e Spin interactions controlled by a spin rotation in
response to a laser

e Spin is physically confined within a harmonic potential
e States are guantized with energy of scale hv

e These harmonic oscillator bound states are identified as
center of mass phonon vibrations

Trapped lon Quantum Computer
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Outer Product Representation of
Available Qubit Quantum States in a TIQC

Two level lon Harmonic Potential Trap

e> 2

Trapped lon Quantum Computer
Patrick Dreher
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Building a 2 Level lon Qubit State

« Want to identify an excited
state that will be “long-lived”

* From laws of Quantum
Mechanics (S, =2 Dsp) Is a
“forbidden transition”™ and so Pu

e

the excited state will be long —3

D3/2

lived (~1 sec) compared to
the lifetime of an allowed
transition (~ 1 nanosecond)

e This transition can be sl

identified as a potential
candidate for a stable qubit

Trapped lon Quantum Computer
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lon Spin States

 Choose electromagnetic field (laser pulse) of appropriate
frequency and duration

« Use the rotation operator to view the pulse as a unitary
transformation allowing a one qubit transformation to be
performed on the spin state

Ry (0) = exp(—i6Sy)
R,(0) = exp(—iHSy)

Trapped lon Quantum Computer
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Phonon Vibration States

 Assume particle is cooled so that it is near its lowest
vibrational state
* Have aladder of these 115 = -—----_---- ;
harmonic oscillator 110> ]
states
Wo
|01> _________ 1-"
w
/l OO>\ -
spin phonon

Trapped lon Quantum Computer
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Construct Universal Quantum Gates
Without Collapsing The Entire Quantum
Computing Computation

29 October 2019

Step 2.

Trapped lon Quantum Computer
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ldentify Candidates for a Two Qubit System

 Identify a single 2 level spin system interacting with an
electromagnetic field
a) Qubit can be identified by the quantized bound states

of an atomic material as seen through ability of a
spin to respond to an electromagnetic field

b) A second gubit can be identified through the set of
Interactions of the ion’s vibrational modes

29 October 2019 Trapped lon Quantum Computer .
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Single lon Behavior

D

e Start with ionin an S state with 2
hyperfine states
e Each qubit has |g>and |e>

o> Ei without center of mass motion
e0 e Using a laser select resonance
between the |el> excited
5 vibrational state of |e>toa D
state
g zi e Laser does not affect g, g, or e,
g0 e This two state laser driven pulse

produces Rabi oscillations

Trapped lon Quantum Computer
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e2

Construct a Phase Gate

e With this driven laser pulse
pumping only this transition

identify a Hilbert space with

states g0, g1, e0, el
 The two state oscillation
between the auxiliary D state

and e, state produce Rabi

oscillations

e> el
e0

S
g2
ES
g0

29 October 2019
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Rabi Oscillations

e Rabi oscillations (also known as the Rabi cycle or Rabi flop) is
the cyclic behavior of a two-level qguantum system in the
presence of an oscillatory driving field (such as a laser pulse)

e Figure below shows cyclic probability amplitude (blue) and the
measurement probability (yellow)

29 October 2019
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Rabi Oscillations Information Used to

Create a Phase Gate

e Rabi oscillation after one period has changed the phase of the

probability amplitude by 7 (phase is -i) (blue)

e Quantities measured in the lab are the probabilities (yellow)

e Figure shows that after the system has returned to the original
state the probability has shifted by 2w but the phase by m (-i)

e 2m pulse in population shifts phase of wavefunction by 7 (-i)

80 2 8
8,2 8
ey €
e, > -e,

29 October 2019
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Phonon Vibration States for Single Atom

 Assume particle is cooled so that it is near its lowest
vibrational state
* Have aladder of these 115 = -—----_---- y
harmonic oscillator 110> ]
states
Wo
|01> _________ f-'l
w
/l OO>\ -
spin phonon
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Energy Levels of a Single Atom

e Assume ion is cooled so that it is near its lowest
vibrational state

 Have a ground and 11> =====mmmpm—————-—
excited spin state 10> . | 0z
and a ground and
excited vibrational ety (@, = w7)
phonon state 01> ===fp====- A

|00> Y I hez
spin/ }non

29 October 2019 Trapped lon Quantum Computer
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Energy Levels of a Single Atom

 Use alaser detuned from the - w, spin transition tuned to
|10>->]01> transition energy #(w, — wy)

e Uniquely forces a 11> =====mmmpm—————-—
transition from 110> i I 0z
|20> - |01> without
possibility of inducing fredo Pl@o = z)
other transitions 01> ===f====- S
If%wz

* This places the entire  |o0> y

lon chain in the first / \

excited vibrational .
spin phonon
state of spin |0>

Trapped lon Quantum Computer
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Construct QM Basis State for Two 4°Ca Atoms

e Construct a set of basis vectors from a linear vector
space describing wavefunction of two ions (A and B) and
a collective phonon vibrational state

0, > (05 > (0>

0, > |15 > |0 >

1, > 05 > |0 >

1, > 15 > |0 >

Trapped lon Quantum Computer
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1. Laser Pulse Generates am
Rotation Pulse Directed to lon A

» Select two “°Ca ions (A and B) and the collective phonon state of the
chain of “°Ca ions and construct outer product state

« Construct operator U, that describes a1 pulse directed to ion A with
energy ft(w, — wyz)
 The laser pulse generates Rabi oscillations

* |on A generates phase —i, changes ion A from |1>-2|0> and phonon
vibrational state |0>-2|1> (ion B unaffected)

0, >[15> 10> —— 04 >[15>1]0>

B

Trapped lon Quantum Computer
Patrick Dreher
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2. Generate Laser Pulse Directed to lon B

« Construct operator Vg that generates a « pulse directed
to ion B and changes the phase of the wavefunction by

e Occurs only if ion B is the ground state |0> and the
phonons are in excited vibrational state |1>

o, —— (D0, > 105> [1>

q0a >l >[1> —— -i|0,>|15>]1>

Trapped lon Quantum Computer
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3. Apply Operator U, a Second Time with a

1t Pulse Directed to lon A
e 1 pulse again directed to ion A

« Ifion Ais in state [0> and phonon is in |1> generates a
phase rotation of —i and changes the state of ion A from
|0>->|1> and the vibrational phonon state from |1>->|0>

04 >0 >|0> —— |0, >]05>]0>

04> 13>[0> —— 0, > 15> 0>

OB> 1> —— (D1, > 105> 10>
CDo, >

Iy >11> —— 1, > 15> 0>

29 October 2019 Trapped lon Quantum Computer
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Construct a 2 Qubit Truth Table
for the Product Operation W=U,V U,

Initial State
0, >105 > 10>
0, > |15 > 10>

14> 1|05 > 10> 1 0 0 O
0 1 0 O

1a>Hp>10> Wepnase = 00 1 0
Final State 0 0 0 -—1

10, > (05 > |0 >
0, > |15 > (0 >
1, > (05 > |0 >
—11,> |15 >0 >

Trapped lon Quantum Computer
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Recall The Property of a Control Phase Gate

» Ina(}),(7) basis, the Control Phase gate changes the
sign of the 2"d qubit when the 1st qubit is 1
0
0
0

1
0
Weprase = 0
0 —1

T _
WepnaseWepnase = 1

S O = O
O = O O

« The CPHASE gate becomes a CNOT universal quantum
gate when combined with 2 Hadamard gates

Trapped lon Quantum Computer
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Recall the Property of the CNOT Gate

Matrix representation of the CNOT gate

1 0 0 O
g [0 10 0
0O 0 1 0
|a> *
| b> N7
_[11 ~10 |aa> > |aa>
[a> = [o‘ , [b> ‘[1] |ab> > |ab>

29 October 2019

T —
UCNOTUCNOT =

|a>

|lb®a>

|ba>—> |bb>
|bb> - |ba>
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Express CNOT in Terms of CPHASE

a>

?7 a> a>

29 October 2019
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SUMMARY - Operation of the
Trapped lon Quantum Computer

1. Select any two ions (“A” and “B”) in the 1-dim chain of 4°Ca
2. Generate a laser pulse to force ion “B” into an up spin state

3. Ifthe ion B is spin up use another laser pulse to induce
center of mass motion of the ion chain (common dipole
motion)

4. The center of mass (CoM) motion is uniformly detected
everywhere along the ion chain

5. Swap the information from the up state of ion B to the center
of mass motion of the ion chain (essentially communicate
signal on the “data bus” of ion chain that the ion “B” is spin

up)

Trapped lon Quantum Computer

Patrick Dreher 69
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Information SWAP Between lon Spin State

and Phonon Center of Mass Vibrational State
e (g, and e, are the internal states of the ion

e Construct arbitrary qubit state (a|g > +f]|e >) with the center of
mass motion |0> laser cooled to ground state

* Fire another  pulse this time between states |[e0> and |g1>

« Probability amplitudes « and B transferred from the internal spin state of
the ion to the phonon vibrational center of mass state

1 (alg > +Ble >)|0 >= a|g0 > +£]e0 >

el ..
_‘T——’~
Transfer information from |e0> to g1> '
gl

; = a|g0 > +LF|gl >
& a|g0 > +B|gl >=|g >\(a|0>+,8|1 >)I

Information now in phonon state that is center of mass motion |

Trapped lon Quantum Computer
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Operation of the
Trapped lon Quantum Computer

6. Communicate lon B information to lon A by constructing a
phase gate via the data bus (CoM motion of phonons)

/. Change rotation of the wavefunction but only if both ions
are spin up

8. Replace the information on the data bus back into the
original lon B (this clears the data bus)

9. Now have a measurement of lon A’'s state without
disturbing it in a way that collapses the entire TIQC state
wavefunction

10. Quantum computation can continue to next gate
operation

Trapped lon Quantum Computer

Patrick Dreher /1
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NXN Qubit Communications

 These 2 ions form quantum computing 2 qubit operations

e Can operate a TIQC with many ions that provide 2N states
using combinations or any 2 ions remotely separated from
each other

e This procedure selects only the 2 ions that participate Iin
the interaction while all other ions in the chain are
undisturbed (no measurement disturbance of the
wavefunction)
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Step 3

Ability to Extract a Final Measurement From
The State of the Qubits at the Conclusion of

the Quantum Computing Program

29 October 2019
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Measuring the Final State of the Two Qubit System
for the 4°Ca* Trapped lon Quantum Computer

 Measurement is done using
the 397 nm laser to detect
whether or not there is
fluorescence between the

P, 2 Sy, transition T P12

D3/2

o Iftheionis in the ground
state (“0” state) then the ion 397 nm
will fluoresce and a 397 nm

light signal will be observed

e Iftheionisin the D, state
(“1” state) there will be no
fluoresce at 397 nm and no
light signal will be observed

Trapped lon Quantum Computer
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lon Trap Quantum Computer Simulation*

How it works:
The first programmable quantum
computer module based on ions

o\ e
| ql 10.1038/nature 18648

* https://www.youtube.com/watch?v=eK6g60zLcVA
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Step 4
System Must Be Scalable

Trapped lon Quantum Computer
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Comments - Ongoing Research
Criteria 5 - System Must Be Scalable

e TIQC requires very pure state initialized which implies very
low (milli-Kelvin) operating temperature for the apparatus

e The frequency of the data bus must be slower than the
frequency of the center of mass phonon vibrational mode

« As the number of ions increases the difficulty of maintaining a
coherent state wavefunction also increases (ex. stray external
EM fields) — increasing likelihood of a destroying the
coherence and leaving a collapsed wavefunction before the
completion of the full set of gate operations

* Ongoing work to improve the performance and operation of
TIQC devices

Trapped lon Quantum Computer
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Scaled Design for a TIQC*

M collection
fibers

N/2 beam
: splitters

. N = N optical

N trapped ion crossconnect
quantum switch ccb
registers

camera

* Monroe, et.al “Large Scale Modular Quantum Computer Architecture with Atomic Memory and Photonic
Interconnects”, Phys. Rev. A 89, 022317 (2014)
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